User Tools

Site Tools


theory:sensor_technology:st20_actuators

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
theory:sensor_technology:st20_actuators [2018/10/10 06:30]
54.36.148.177 ↷ Links adapted because of a move operation
— (current)
Line 1: Line 1:
-====== Actuators: An Example of an Electrodynamic Motor ====== 
- 
-//Now we will consider some actuators as a lumped element system. We will use the same electro-mechanical analogies as introduced in the [[theory:​sensor_technology:​st10_lumped_element_models|lumped element page]] and on the [[theory:​sensor_technology:​st13_lumped_element_models_advanced|systems theory page]]. The analogy concept is based on the work of Firestone((F.A. Firestone, A new analogy between mechanical and electrical systems, J. Acoust. Soc. Amer., 4 (1933), pp. 249 - 267 )) ((F.A. Firestone, The mobility method for computing the vibrations of linear mechanical and acoustical systems: mechanical-electrical analogies, J. Appl. Phys., 9 (1938), pp. 373 - 387 )) and Beranek((Leo L. Beranek, Acoustics, McGraw-Hill,​ New York, 1954 ))// 
- 
-===== Electrodynamic transduction ===== 
- 
-Let us now restrict to two domains: the electrical and the mechanical. The state variables, flows and efforts are given in <tabref StateVariables>​. One new row is added: the mobility type equivalent for the mechanical domain. The //mobility type// analogy is the //​conjugate//​ of the //impedance type// analogy. The concept of conjugates is briefly explained in the section about [[theory:​sensor_technology:​st10_lumped_element_models#​Across and through variables, mobility and impedance type|across and through varables]] on the [[theory:​sensor_technology:​st10_lumped_element_models|lumped element pages]]. The only reason to introduce it, is that the derivation of the model becomes easier when using the impedance type for the electrical domain and the mobility type of analogy for the mechanical domain (see chapter 2.17 in the book of Borwick((John Borwick (Editor), Loudspeaker and Headphone Handbook, 3rd Edition, Focal Press, 2001)) ). 
- 
-<​tabcaption StateVariables|Summary of state variables, signals and components in the electrical and mechanical domain> 
-^ Physical domain ^ State variable ^ Effort ^ Flow ^ Dissipative ^ Inertial buffer ^ Capacitive buffer ^ 
-| Electrical | charge $q [C]$ | potential difference $u [V]$ | current $i [A]$ | resistor $R [\Omega]$ | coil $L [H]$ | capacitor $C [F]$ | 
-| Mechanical (Impedance type) | translation $x [m]$ | force $F [N]$ | velocity $v [m/s]$ | lossy friction $[N \cdot s/m]$ | mass $M [kg]$ | compliance $[m/N]$ | 
-| Mechanical (Mobility type) | impulse $p [N/s]$ | velocity $v [m/s]$ | force $F [N]$ | inverse of lossy friction $[m/s / N]$ | compliance $[m/N]$ | mass $M [kg]$ | 
-</​tabcaption>​  
- 
- 
-The meaning of //​compliance//​ can be understood as the inverse of a spring constant $c_{m}^{-1}=k [N/m]$. 
- 
-Electromechanical transducers,​ like speakers, solenoids and motors, are in fact linking the mechanical domain to the electrical domain. This is a bidirectional effect: electrical current will result into the rotatiopn of a motor, but moving the shaft of the motor will also result into an electric voltage on the electrical connectors of the motor. 
- 
-The physical phenomena describing the link from the electrical domain to the mechinical are the Lorentz force and the back emf as descibed by the Biot and Savart law. The //Lorenz force law// has two terms constituting a force, beging (a) the motion of charge (an electric current) in a magnetic field gives a force and (b) a static charge in an electrical field results in a force. These two phenomena are captured in the equation 
-\begin{equation} 
-\mathbf{F}=q\left ( \mathbf{E}+\mathbf{v}\times\mathbf{B} \right ). 
-\label{eq_lorenz} 
-\end{equation} 
-The //Biot and Savart law// describes the resultant magnetic field $\mathbf{B}$ at position $\mathbf{r}$ generated by a steady current $I$ (for example due to a wire): 
-\begin{equation} 
-\mathbf{B}\left ( \mathbf{r} \right )=\frac{\mu_{0}}{4 \pi}\int_{l}\frac{I \mathrm{d}\mathbf{l}\times \mathbf{r}}{\left | \mathbf{r} \right | ^{3}}. 
-\label{eq_biotsavart} 
-\end{equation} 
-Equations \eqref{eq_lorenz} and \eqref{eq_biotsavart} can be simplified into the coupled interaction 
- 
-\begin{equation} 
-\begin{aligned} 
-u \quad & = \quad Blv , & \quad \text{(Back emf creation)} \\[5pt] 
-F \quad & = \quad Bli ,  & \quad \text{(Biot and Savart force creation)} ​  ​\\[5pt] 
-\end{aligned} 
-\label{eq_coupling} 
-\end{equation} 
- 
-which is true for simple electromechanical transducers. The first equation of \eqref{eq_coupling} describes the interaction between the two efforts, while the second equation describes the interaction between the two flows. The coupling is given by the $Bl$ product, representing a magnetic field times a certain length of a conducting wire in the transducer. These two equations constitte a transformer element as shown in <imgref motor_as_transformer>​. 
- 
-<​imgcaption motor_as_transformer|The electromagnetic coupling in an electrodynamic motor can be seen as a transformer>​{{theory:​sensor_technology:​modelling:​motor_as_transformer.png?​200}}</​imgcaption>​ 
- 
-===== Modelling an electromagnetic motor with a load ===== 
- 
-The transformer of <imgref motor_as_transformer>​ can be seen as the element that does the bidirectional transduction from the electronic to the mechanical domain (and vice versa) using the electrodynamic principle. This means, it is using electromagnetic effects (a coil) to make displacement form an electric signal. 
- 
-When adding some other lumped elements we can complete the model for motors, speakers and solenoids: 
-  * $R_{e}$ : the electrical resistance of the transducer in $[\Omega]$ 
-  * $C_{m}$ : the mechanical compliance (inverse of the spring constant) of the actuated object (speaker cone, rubber, tissue, or whatever) in $[m/N]$ 
-  * $M_{m}$ : the mass of the actuated object (cone mass, effective mass of moved tissue, or whatever) in $[kg]$ 
-  * $G_{m}$ : the dissipation in the mechanical domain (a resistive element) in $[m/s/N]$ 
-the total model <imgref electrodynamic_transducer>​ can be formed. Note that the mechanical components $C_{m}$, $M_{m}$ and $G_{m}$ are in parallel because the sum of forces is equal to the spring force plus the force on the mass plus the lossy force (equivalent to Kirchhoffs currrent law). 
- 
-<​imgcaption electrodynamic_transducer|The total model of an electrodynamic motor>​{{theory:​sensor_technology:​modelling:​electrodynamic_transducer.png?​450}}</​imgcaption>​ 
- 
-Finally, in <imgref electrodynamic_transducer_simplified>​ a simplification is made, by removing the transformer element. In that case, the mechanical components will get scaled values 
- 
-\begin{equation} 
-\begin{aligned} 
-C'_{m} \quad & = \quad \left ( Bl \right )^{2} C_{m} \\ 
-M'_{m} \quad & = \quad \frac{M_{m}}{\left ( Bl \right )^{2}} \\ 
-G'_{m} \quad & = \quad \left ( Bl \right )^{2} G_{m} = \frac{\left ( Bl \right )^{2}}{R_{m}}\\ 
-\end{aligned} 
-\label{eq_conversions} 
-\end{equation} 
- 
-and $R_{e}$ will stay the same. With this simplified model we can easily do some simulations. The derived equations will be in the electrical domain (currents and voltages) but these are easily converted into forces and velocities using equations \eqref{eq_coupling}. 
- 
-<​imgcaption electrodynamic_transducer_simplified|The total model of an electrodynamic motor, after elimination of the transformer>​{{theory:​sensor_technology:​modelling:​electrodynamic_transducer_simplified.png?​350}}</​imgcaption>​ 
- 
-===== The dynamic behaviour ===== 
- 
-The total model can be written as: 
- 
-\begin{equation} 
-\bar{u}\left (j \omega ​ \right )=\bar{u}_{in}\left (j \omega ​ \right )\frac{1}{1+R_{e}\left ( \frac{1}{G'​_{m}} + j \omega M'_{m} +\frac{1}{j \omega ​ C'​_{m}}\right )} 
-\end{equation} 
- 
-which is the transfer function in the frequency domain from the input voltage $\bar{u}_{in}$ to the output voltage $\bar{u}$. In case we are interested in the output motion $\bar{v}$ we can easily convert 
- 
-\begin{equation} 
-\bar{v}\left ( j \omega \right )=\frac{\bar{u}\left ( j \omega \right )}{Bl} 
-\end{equation} 
-which follows from equation \eqref{eq_coupling}. In case we are not interested in the motion $\bar{v}$ of the actuator but in the excursion $\bar{x}$, an integration step is needed. This is described in the frequency domain as 
-\begin{equation} 
-\bar{x}\left ( j \omega \right )=\frac{\bar{v}\left ( j \omega \right )}{j \omega}=\frac{\bar{u}\left ( j \omega \right )}{j \omega Bl}. 
-\end{equation} 
- 
-In total, the electromechanical actuator as modelled in <imgref electrodynamic_transducer>,​ can be characterized by two transfer functions: 
- 
-\begin{equation} 
-\begin{aligned} 
-\bar{x}\left ( j \omega \right )\quad & = \quad \bar{u}_{in}\left (j \omega ​ \right )\frac{1}{j \omega Bl\left ( 1 + R_{e}\left ( \frac{1}{G'​_{m}} + j \omega M'_{m} +\frac{1}{j \omega ​ C'​_{m}}\right ) \right )} \\ 
-\bar{Z}\left ( j \omega \right ) \quad & = \quad \frac{\bar{u}_{in}\left (j \omega ​ \right )}{\bar{i}\left (j \omega ​ \right )} = R_{e} + \frac{1}{\frac{1}{G'​_{m}} + j \omega M'_{m} +\frac{1}{j \omega ​ C'​_{m}}} 
-\end{aligned} 
-\end{equation} 
- 
-where the first one shows the excursion $\bar{x}(j \omega)$ as a result of the input voltage $u_{in}(j \omega)$ and the second one the electrical input impedance $\bar{Z}(j \omega)$. For understanding the behaviour (like resonances and damping factors) it is easier to write 
- 
-\begin{equation} 
-\begin{aligned} 
-\bar{x}\left ( j \omega \right ) \quad & = \quad \bar{u}_{in}\left (j \omega ​ \right )\frac{Bl \frac{C_{m}}{R_{e}}}{\left ( j \omega \right )^{2} C_{m}M_{m} + j \omega \frac{C_{m}}{G_{m}}\left ( 1+ \left ( Bl \right )^{2}\frac{G_{m}}{R_{e}} \right )+1} \\ 
-\bar{Z}\left ( j \omega \right ) \quad & = \quad R_{e} \frac{\left ( j \omega \right )^{2} C_{m}M_{m} + j \omega \frac{C_{m}}{G_{m}}\left ( 1+ \left ( Bl \right )^{2}\frac{G_{m}}{R_{e}} \right )+1}{\left ( j \omega \right )^{2} C_{m}M_{m} + j \omega \frac{C_{m}}{G_{m}}+1} 
-\end{aligned} 
-\end{equation} 
- 
-where the conversions \eqref{eq_conversions} are used. The corresponding curves are plotted in <imgref impedance_electrodynamic_actuator>​ for arbitrary component values. 
- 
-<​imgcaption transfer_electrodynamic_actuator|The transfer function of an electrodynamic actuator>​{{transfer_electrodynamic_actuator.png?​450}}</​imgcaption>​ 
-<​imgcaption impedance_electrodynamic_actuator|The impedance of an electrodynamic actuator>​{{impedance_electrodynamic_actuator.png?​450}}</​imgcaption>​ 
- 
-===== Interpretation of the dynamic behaviour ===== 
- 
-What can we see? 
-  * At DC input, the electrical input impedance is $R_e$ and the excursion of the mechanical output is $u_{in}Bl\cdot C_{m} /R_{e}$ 
-  * For very high frequencies,​ the electrical input impedance is $R_e$ and the mechanical output excursion is $0m$ 
-  * There is a resonance at $f_{res}=1/ (2 \pi \sqrt {C_{m}M_{m}})$,​ so independent of the coupling factor $Bl$. 
-This means that based the resonance frequency, we can determine the mechanical compliance $C_{m}$ from the electrical impedance assuming a constant effective mass $M_{m}$. 
- 
- 
-===== Other Types of actuators ===== 
- 
-The example above is for an electrodynamic transducer, like speakers, motors and solenoids. The physical principle to drive a motor is the Biot and Savart force creation (that a current through a wire results into a magnetic field that exerts a force on a permanent magnet in the field as described by equation \eqref{eq_biotsavart}). We may wonder whether there are other principles to drive machinery from an electric source. An interesting summary of actuation principles from the field of MEMS micro-valves can be found in <tabref Neagu>. This table is based on a literature search for micro valve principles((Cristina Neagu, A medical microactuator based on an electrochemical principle, Thesis University of Twente, 1998)), so the devices are optimised for valve purposes in the submillimeter range. 
- 
-<​tabcaption Neagu|Properties of micro valves made with MEMS technology[Cristina Neagu, 1998]> 
-^ Actuation principle ^  Pressure [$10^{5} Pa$]  ^  Stroke [$\mu m$]  ^  Voltage [$V$]  ^  Power consumption [$mW$] ​ ^ 
-| Electrostatic |  $< 0.5$  |  $< 10$  |  $100 – 200$  |  $< 1$  | 
-| Thermopneumatic |  $1 < P < 100$  |  $30 < d < 100$  |  $5 – 20$  |  $2000 – 5000$  | 
-| Electromagnetic |  $< 0.5$  |  $> 100$  |  $20 – 50$  |  $50 – 300$  |  
-| Piezoelectric |  $< 1$  |  $10 < d < 50$  |  $100 – 200$  |  $< 5$  | 
-</​tabcaption>​ 
- 
-The thermopneumatic principle (thermophone) clearly produces the largest pressure, however the power consumption is huge. The electrodynamic principle is the proper choice for a large stroke. For small applications we can benefit from the low power electrostatic principle. 
-In practical scales in the centimeter range and above, other physical principles may be beneficial. See also the page on the principle of scaling. From our experience we may understand that electromagnetic priciples are beneficial over electrostatic principles in the region of centimeters and metres. Thermopneumatic effects can be huge in the macroscopic world, although it takes time and a significant amount of energy to heat larger volumes. ​ 
- 
-The models for other actuation principles from the perspective of miniature speakers (recievers) is described in   ​[[theory:​sensor_technology:​st21_actuator_models|Appendix C: Actuator principles for small speakers]]. 
-====== Sensor Technology TOC ====== 
- 
-These are the chapters for the Sensor Technology course: 
-  * Chapter 1: [[theory:​sensor_technology:​st1_measurement_theory|Measurement Theory]] 
-  * Chapter 2: [[theory:​sensor_technology:​st2_measurement_errors|Measurement Errors]] 
-  * Chapter 3: [[theory:​sensor_technology:​st3_measurement_technology|Measurement Technology]] 
-  * Chapter 4: [[theory:​sensor_technology:​stb_conventions_for_good_graphs_and_tables|Circuits,​ Graphs, Tables, Pictures and Code]] 
-  * Chapter 5: [[theory:​sensor_technology:​st4_sensor_theory|Basic Sensor Theory]] 
-  * Chapter 6: [[theory:​sensor_technology:​st6_sensoractuatorsystems|Sensor-Actuator Systems]] ​ 
-  * Chapter 7: [[theory:​sensor_technology:​st7_modelling_main|Modelling]] 
-  * Chapter 8: [[theory:​sensor_technology:​st8_accelerometer_model|Modelling:​ The Accelerometer]] - example of a second order system 
-  * Chapter 9: [[theory:​sensor_technology:​st9_scaling|Modelling:​ Scaling]] - why small things appear to be stiffer 
-  * Chapter 10: [[theory:​sensor_technology:​st10_lumped_element_models|Modelling:​ Lumped Element Models]] 
-  * Chapter 11: [[theory:​sensor_technology:​st11_finite_element_models|Modelling:​ Finite Element Models]] 
-  * Chapter 12: [[theory:​sensor_technology:​st12_impedance_spectroscopy|Modelling:​ Transducer Characterization by Impedance Spectroscopy]] 
-  * Chapter 13: [[theory:​sensor_technology:​st13_lumped_element_models_advanced|Modelling:​ Systems Theory]] 
-  * Chapter 14: [[theory:​sensor_technology:​st14_differential_equation_numerical_models|Modelling:​ Numerical Integration]] 
-  * Chapter 15: [[theory:​sensor_technology:​st15_signal_conditioning_and_sensor_read-out|Signal Conditioning and Sensor Read-out]] 
-  * Chapter 16: [[theory:​sensor_technology:​st16_resistive_sensors|Resistive Sensors]] 
-  * Chapter 17: [[theory:​sensor_technology:​st17_capacitive_sensors|Capacitive Sensors]] 
-  * Chapter 18: [[theory:​sensor_technology:​st18_magnetic_sensors|Magnetic Sensors]] 
-  * Chapter 19: [[theory:​sensor_technology:​st19_optical_sensors|Optical Sensors]] 
-  * Chapter 20: Actuators - an example of an electrodynamic motor 
-  * Chapter 21: [[theory:​sensor_technology:​st21_actuator_models|Actuator principles for small speakers]] <- Next 
-  * Chapter 22: [[theory:​sensor_technology:​st22_adc_and_dac|ADC and DAC]] 
-  * Chapter 23: [[theory:​sensor_technology:​st23_bus_interfaces|Bus Interfaces]] - SPI, I<​sup>​2</​sup>​C,​ IO-Link, Ethernet based 
-  * Appendix A: [[theory:​sensor_technology:​sta_easyunitconversion|Systematic unit conversion]] 
-  * Appendix B: [[theory:​sensor_technology:​stc_common_mode_rejection_ratio_cmrr|Common Mode Rejection Ratio (CMRR)]] 
-  * Appendix C: [[theory:​sensor_technology:​std_schmitt_trigger|A Schmitt Trigger for sensor level detection]] 
- 
  
theory/sensor_technology/st20_actuators.1539153019.txt.gz · Last modified: 2018/10/10 06:30 by 54.36.148.177